dc.contributor.author
Matavž, Aleksander
dc.contributor.author
Verstreken, Margot F. K.
dc.contributor.author
Boullart, Leen
dc.contributor.author
Tietze, Max L.
dc.contributor.author
Sugihara, Masaya
dc.contributor.author
Heinke, Lars
dc.contributor.author
Ameloot, Rob
dc.date.accessioned
2025-10-29T09:15:37Z
dc.date.available
2025-10-29T09:15:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50049
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49774
dc.description.abstract
Selective detection of specific volatile organic compounds (VOCs) is crucial for health, safety, and environmental applications, but current sensors suffer from poor selectivity and struggle to measure specific VOCs in the presence of interfering compounds and water vapor. To address this issue, we introduce the kinetic selectivity achievable in nanoporous crystals, specifically metal-organic frameworks (MOFs), into the domain of chemical sensors. In well-selected MOFs, similar molecules can have diffusivities that differ by orders of magnitude. Measuring these diffusivity values is challenging since conventional methods based on rapid changes in atmosphere composition cannot be used in a sensing context. A temperature-perturbation method is developed for thin-film capacitive sensors with a MOF dielectric layer to enable diffusivity measurements in a fixed atmosphere. Our approach enables a single sensor to differentiate and quantify VOCs at ppm concentrations, even in mixtures containing high water vapor concentrations, outperforming a state-of-the-art ten-element sensor array.
en
dc.format.extent
8 Seiten
dc.rights
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Metal–organic frameworks
en
dc.subject
Sensors and biosensors
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Kinetic selectivity in metal-organic framework chemical sensors
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-10-28T18:52:30Z
dcterms.bibliographicCitation.articlenumber
8347
dcterms.bibliographicCitation.doi
10.1038/s41467-025-64199-z
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-64199-z
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
DeepGreen