dc.contributor.author
Goumans, Jeroen
dc.contributor.author
Smit, Matthijs A.
dc.contributor.author
Musiyachenko, Kira A.
dc.contributor.author
Rasbury, E. Troy
dc.contributor.author
Bleeker, Wouter
dc.contributor.author
Caton, Summer
dc.contributor.author
Halla, Jaana
dc.contributor.author
Hoffmann, Jörg Elis
dc.contributor.author
Kooijman, Ellen
dc.contributor.author
Mezger, Klaus
dc.date.accessioned
2025-10-27T09:08:42Z
dc.date.available
2025-10-27T09:08:42Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50023
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49748
dc.description.abstract
The deep recycling of surface material into Earth’s mantle is an integral process governing global water and fluid-mobile element cycles. This recycling is largely predicated on subduction operating efficiently, which may not apply for the first two billion years of Earth’s history. Tracing the initiation and evolution of the modern deep fluid-mobile element cycle requires determining when the mantle first became modified by subducted surface-derived materials on a global scale. The B isotope system provides a unique geochemical parameter to test for early signatures of such recycling, given that B is enriched and isotopically fractionated at Earth’s surface, depleted in the mantle, and mobilized by fluids and fluid-rock interaction. In this study, B isotopes of granitoids from seven Archean cratons are analyzed to trace the early signatures of recycling of surface-altered materials. When filtered for alteration and (post-)magmatic B modification, the B isotope compositions of the sample set show substantial variation. The range exhibited by sanukitoids (−8.9 ‰ to −1.6 ‰, mean: −4.7 ‰, n = 5) overlaps with other granitoids (−15.8 ‰ to +8.0 ‰, mean: −8.6 ‰, n = 30), but the average B isotope composition of sanukitoids is higher than other granitoids. The granitoids reveal a temporal diversification towards, on average, higher 11B/10B values from the Neoarchean onward. The heavier B isotope values reflect the recycling of surface-derived B into the melt source along a geotherm that was cold enough to prevent total loss of B through dehydration reactions, consistent with a cold-subduction geotherm. The B data thus indicate that the subduction-driven recycling of surface-derived materials into the mantle became more prevalent since the Neoarchean, marking this era as the likely starting point for the modern deep fluid-mobile element and water cycle.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Archean granitoids
en
dc.subject
Deep water cycle
en
dc.subject
Fluid-mobile elements
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Boron isotopes trace an increase in subduction-driven recycling of fluid-mobile elements in the Neoarchean
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.gca.2025.09.021
dcterms.bibliographicCitation.journaltitle
Geochimica et Cosmochimica Acta
dcterms.bibliographicCitation.pagestart
1
dcterms.bibliographicCitation.pageend
11
dcterms.bibliographicCitation.volume
408
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.gca.2025.09.021
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1872-9533
refubium.resourceType.provider
WoS-Alert