dc.contributor.author
Broerman, Adam J.
dc.contributor.author
Pollmann, Christoph
dc.contributor.author
Zhao, Yang
dc.contributor.author
Lichtenstein, Mauriz A.
dc.contributor.author
Jackson, Mark D.
dc.contributor.author
Tessmer, Maxx H.
dc.contributor.author
Ryu, Won Hee
dc.contributor.author
Ogishi, Masato
dc.contributor.author
Abedi, Mohamad H.
dc.contributor.author
Sahtoe, Danny D.
dc.date.accessioned
2025-11-24T10:19:50Z
dc.date.available
2025-11-24T10:19:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50022
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49747
dc.description.abstract
Protein design has focused on the design of ground states, ensuring that they are sufficiently low energy to be highly populated1. Designing the kinetics and dynamics of a system requires, in addition, the design of excited states that are traversed in transitions from one low-lying state to another2,3. This is a challenging task because such states must be sufficiently strained to be poorly populated, but not so strained that they are not populated at all, and because protein design methods have focused on generating near-ideal structures4,5,6,7. Here we describe a general approach for designing systems that use an induced-fit power stroke8 to generate a structurally frustrated9 and strained excited state, allosterically driving protein complex dissociation. X-ray crystallography, double electron–electron resonance spectroscopy and kinetic binding measurements show that incorporating excited states enables the design of effector-induced increases in dissociation rates as high as 5,700-fold. We highlight the power of this approach by designing rapid biosensors, kinetically controlled circuits and cytokine mimics that can be dissociated from their receptors within seconds, enabling dissection of the temporal dynamics of interleukin-2 signalling.
en
dc.format.extent
35 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Deformation dynamics
en
dc.subject
Interleukins
en
dc.subject
Protein design
en
dc.subject
X-ray crystallography
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Design of facilitated dissociation enables timing of cytokine signalling
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41586-025-09549-z
dcterms.bibliographicCitation.journaltitle
Nature
dcterms.bibliographicCitation.number
8089
dcterms.bibliographicCitation.pagestart
528
dcterms.bibliographicCitation.pageend
535
dcterms.bibliographicCitation.volume
647
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41586-025-09549-z
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1476-4687
refubium.resourceType.provider
WoS-Alert