dc.contributor.author
Kilgour, Michael
dc.contributor.author
Tuckerman, Mark E.
dc.contributor.author
Rogal, Jutta
dc.date.accessioned
2025-10-24T11:20:00Z
dc.date.available
2025-10-24T11:20:00Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49990
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49715
dc.description.abstract
Representations are a foundational component of any modeling protocol, including on molecules and molecular solids. For tasks that depend on knowledge of both molecular conformation and 3D orientation, such as the modeling of molecular dimers, clusters, or condensed phases, we desire a rotatable representation that is provably complete in the types and positions of atomic nuclei and roto-inversion equivariant with respect to the input point cloud. In this paper, we develop, train, and evaluate a new type of autoencoder, molecular O(3) encoding net (Mo3ENet), for multi-type point clouds, for which we propose a new reconstruction loss, capitalizing on a Gaussian mixture representation of the input and output point clouds. Mo3ENet is end-to-end equivariant, meaning the learned representation can be manipulated on O(3), a practical bonus. An appropriately trained Mo3ENet latent space comprises a universal embedding for scalar, vector, and tensorial molecule property prediction tasks, as well as other downstream tasks incorporating the 3D molecular pose, and we demonstrate its fitness on several such tasks.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
molecule representation
en
dc.subject
molecule autoencoder
en
dc.subject
equivariant graph neural network
en
dc.subject
point cloud reconstruction
en
dc.subject
molecule property prediction
en
dc.subject
crystal property prediction
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Multi-type point cloud autoencoder: a complete equivariant embedding for molecule conformation and pose
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
035055
dcterms.bibliographicCitation.doi
10.1088/2632-2153/adff35
dcterms.bibliographicCitation.journaltitle
Machine Learning: Science and Technology
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2632-2153/adff35
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-2153
refubium.resourceType.provider
WoS-Alert