dc.contributor.author
Fernández, Francisco J.
dc.contributor.author
Márquez Albés, Ignacio
dc.contributor.author
Tojo, F. Adrián F.
dc.contributor.author
Villanueva Mariz, Carlos
dc.date.accessioned
2025-10-24T08:31:57Z
dc.date.available
2025-10-24T08:31:57Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49973
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49698
dc.description.abstract
We investigate the existence and uniqueness of solutions to first-order Stieltjes differential problems, focusing on the role of the Stieltjes derivative and its kernel. Unlike the classical case, the kernel of the Stieltjes derivative operator is nontrivial, leading to non-uniqueness issues in Cauchy problems. We characterize this kernel by providing necessary and sufficient conditions for a function to have a zero Stieltjes derivative. To address the implications of this nontrivial kernel, we introduce a function space which serves as a suitable framework for studying Stieltjes differential problems. We explore its topological structure and propose a metric that facilitates the formulation of existence and uniqueness results. Our findings demonstrate that solutions to first-order Stieltjes differential equations are, in general, not unique, underscoring the need for a refined analytical approach to such problems.
en
dc.format.extent
41 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Stieltjes derivative
en
dc.subject
kernel of the derivative
en
dc.subject
Stieltjes differential equations
en
dc.subject
Cauchy problem
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
On the kernel of the Stieltjes derivative and the space of bounded Stieltjes-differentiable functions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.14232/ejqtde.2025.1.36
dcterms.bibliographicCitation.journaltitle
Electronic Journal of Qualitative Theory of Differential Equations
dcterms.bibliographicCitation.number
36
dcterms.bibliographicCitation.pagestart
1
dcterms.bibliographicCitation.pageend
41
dcterms.bibliographicCitation.volume
2025
dcterms.bibliographicCitation.url
https://doi.org/10.14232/ejqtde.2025.1.36
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
yes
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1417-3875
refubium.resourceType.provider
WoS-Alert