dc.contributor.author
Leone, Lorenzo
dc.contributor.author
Rizzo, Jacopo
dc.contributor.author
Eisert, Jens
dc.contributor.author
Jerbi, Sofiene
dc.date.accessioned
2025-11-24T10:04:22Z
dc.date.available
2025-11-24T10:04:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49954
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49679
dc.description.abstract
The precise quantification of the limits to manipulating quantum resources lies at the core of quantum information theory. However, standard information-theoretic analyses do not consider the actual computational complexity involved in performing certain tasks. Here we address this issue within the realm of entanglement theory, finding that accounting for computational efficiency substantially changes what can be achieved using entangled resources. We consider two key figures of merit: the computational distillable entanglement and the computational entanglement cost. These measures quantify the optimal rates of entangled bits that can be extracted from or used to dilute many identical copies of n-qubit bipartite pure states, using computationally efficient local operations and classical communication. We demonstrate that computational entanglement measures diverge considerably from their information-theoretic counterparts. Whereas the information-theoretic distillable entanglement is determined by the von Neumann entropy of the reduced state, we show that the min-entropy governs the computationally efficient setting. On the other hand, computationally efficient entanglement dilution requires maximal consumption of entangled bits, even for nearly unentangled states. Furthermore, in the worst-case scenario, even when an efficient description of the state exists and is fully known, one gains no advantage over state-agnostic protocols. Our findings establish sample-complexity bounds for measuring and testing the von Neumann entropy, fundamental limitations on efficient state compression and efficient local tomography protocols.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational science
en
dc.subject
Quantum information
en
dc.subject
Theoretical physics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Entanglement theory with limited computational resources
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41567-025-03048-8
dcterms.bibliographicCitation.journaltitle
Nature Physics
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.pagestart
1847
dcterms.bibliographicCitation.pageend
1854
dcterms.bibliographicCitation.volume
21
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41567-025-03048-8
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.funding
Springer Nature DEAL
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1745-2473
dcterms.isPartOf.eissn
1745-2481