dc.contributor.author
Allen, Peter
dc.contributor.author
Parczyk, Olaf
dc.contributor.author
Pfenninger, Vincent
dc.date.accessioned
2025-10-20T07:43:19Z
dc.date.available
2025-10-20T07:43:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49888
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49613
dc.description.abstract
We prove that random hypergraphs are asymptotically almost surely resiliently Hamiltonian. Specifically, for any gamma > 0 and k >= 3, we show that asymptotically almost surely, every subgraph of the binomial random h-uniform hypergraph G((k))(n, n(gamma-1)) in which all (h-1)-sets are contained in at least (1/2 + 2 gamma)pn edges has a tight Hamilton cycle. This is a cyclic ordering of the n vertices such that each consecutive h vertices forms an edge.
en
dc.format.extent
67 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Random graphs
en
dc.subject
tight Hamilton cycles
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Resilience for tight Hamiltonicity
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
9
dcterms.bibliographicCitation.doi
10.5070/C64163846
dcterms.bibliographicCitation.journaltitle
Combinatorial Theory
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
4
dcterms.bibliographicCitation.url
https://doi.org/10.5070/C64163846
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2766-1334
refubium.resourceType.provider
WoS-Alert