dc.contributor.author
Bücking, Ulrike
dc.contributor.author
Schaller, Karin
dc.contributor.author
Haase, Christian
dc.contributor.author
Wiljes, Jan-Hendrik de
dc.date.accessioned
2025-10-20T07:25:47Z
dc.date.available
2025-10-20T07:25:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49886
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49611
dc.description.abstract
We give a combinatorial proof of a lattice point identity involving a lattice polygon and its dual, generalizing the formula area(Δ)+area(Δ∗)=6 for reflexive Δ. The identity is equivalent to the stringy Libgober-Wood identity for toric log del Pezzo surfaces.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nd/4.0/
dc.subject
combinatorial proof
en
dc.subject
lattice point identity
en
dc.subject
LDP Polygons
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
LDP Polygons and the Number 12 Revisited
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
P342
dcterms.bibliographicCitation.doi
10.37236/12783
dcterms.bibliographicCitation.journaltitle
Electronic Journal of Combinatorics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
32
dcterms.bibliographicCitation.url
https://doi.org/10.37236/12783
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1077-8926
refubium.resourceType.provider
WoS-Alert