dc.contributor.author
Wu, Rong
dc.contributor.author
Maudet, Florian
dc.contributor.author
Phan, Thanh Luan
dc.contributor.author
Schmitt, Sebastian W.
dc.contributor.author
Deshpande, Veeresh
dc.contributor.author
Dubourdieu, Catherine
dc.date.accessioned
2025-10-17T10:59:26Z
dc.date.available
2025-10-17T10:59:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49863
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49588
dc.description.abstract
Memristive devices, which emulate the synaptic behavior of biological systems, are at the forefront of next-generation memory and neuromorphic computing technologies. Here, we investigate bipolar resistive switching in Pt/polycrystalline ErMnO3/Ti/Au memristive devices and show how mixed orthorhombic and hexagonal ErMnO3 polymorph films can be engineered to optimize the device performance. The two crystalline phases are evidenced by a combination of correlative microscopies (scanning electron microscopy, optical microscopy and conductive atomic force microscopy) and Raman spectroscopy. The devices exhibit high ROFF/RON ratios (~105) and ultra-low RON resistances (~10 Ω). The resistive switching is the result from the formation and rupture of an oxygen-vacancy-based conductive filament, which likely occurs either in the orthorhombic phase or at the boundary between the two polymorphs. An increased fraction of orthorhombic phase strongly reduces the operating voltage (down to VSet ~ −2.07 V) and its variability. The presence of the hexagonal phase, which is much less conductive than the orthorhombic one, reduces leakage currents in the devices, that otherwise would not exhibit switching behavior.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electronic devices
en
dc.subject
Electronic properties and materials
en
dc.subject
bipolar resistive switching devices
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Valence-change bipolar resistive switching devices based on ErMnO3 polymorphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
202
dcterms.bibliographicCitation.doi
10.1038/s43246-025-00929-6
dcterms.bibliographicCitation.journaltitle
Communications Materials
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s43246-025-00929-6
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2662-4443
refubium.resourceType.provider
WoS-Alert