dc.contributor.author
Köckritz, Jannis
dc.contributor.author
İlgen, Bahar
dc.contributor.author
Cohrdes, Caroline
dc.contributor.author
Hattab, Georges
dc.date.accessioned
2025-10-14T09:25:25Z
dc.date.available
2025-10-14T09:25:25Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49812
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49537
dc.description.abstract
Mental health discourse has gained prominence in public media, significantly influencing societal perceptions. This study explores the application of Natural Language Processing (NLP) techniques to analyze the representation of mental health in news media texts. The complex interplay between media representation and public understanding of mental health requires advanced analytical tools. NLP offers promising avenues for unpacking these narratives but faces challenges in capturing the nuances of mental health discourse. We employ a scoping review to examine several NLP applications, including sentiment analysis, topic modeling, and bias detection. Our study compares news media to social media, highlighting the unique linguistic challenges of formal journalistic language. The analysis reveals significant limitations of current NLP techniques when applied to mental health news coverage. We uncover significant biases and accuracy issues in sentiment analysis of mental health content across different media platforms. Our findings underscore the need for specialized NLP techniques in mental health news analysis. We propose ten recommendations for tailored NLP approaches that provide critical insights for researchers, policymakers, and media professionals. This work aims to improve mental health communication strategies and promote more nuanced, effective public discourse and media coverage.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Mental health
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Current applications and future directions in natural language processing for news media and mental health
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
32532
dcterms.bibliographicCitation.doi
10.1038/s41598-025-18413-z
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41598-025-18413-z
refubium.affiliation
Mathematik und Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2045-2322
refubium.resourceType.provider
WoS-Alert