dc.contributor.author
Brandt, Danja
dc.contributor.author
Nikishina, Anastasiia A.
dc.contributor.author
Bias, Anne
dc.contributor.author
Günther, Robert
dc.contributor.author
Hauser, Anja E.
dc.contributor.author
Duda, Georg N.
dc.contributor.author
Beckers, Ingeborg E.
dc.contributor.author
Niesner, Raluca A.
dc.date.accessioned
2025-10-02T12:32:34Z
dc.date.available
2025-10-02T12:32:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49644
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49367
dc.description.abstract
Significance
Understanding the structural organization of biological tissues is critical for studying their function and response to physiological and pathological conditions. In vivo imaging techniques, such as multiphoton microscopy, enable high-resolution visualization of tissue architecture. However, automated orientation analysis remains challenging due to imaging noise, complexity, and reliance on manual annotations, which are time-consuming and subjective.
Aim
We present a Radon transform–based algorithm for robust, annotation-free structural orientation analysis across multimodal imaging datasets, aiming to improve objectivity and efficiency without introducing preprocessing artifacts.
Approach
The algorithm employs a patch-based Radon transform approach to detect oriented structures in noisy images. By analyzing projection peaks in Radon space, it enhances small structures’ visibility while minimizing noise and artifact influence. The method was evaluated using synthetic and in vivo datasets, comparing its performance with human annotations.
Results
The algorithm achieved strong agreement with human annotations, with detection accuracy exceeding 88% across different imaging modalities. Variability among trained raters emphasized the benefits of an objective, mathematically driven approach.
Conclusions
The proposed method provides a robust and adaptable solution for structural orientation analysis in biological images. Its ability to quantify tissue component orientation without preprocessing artifacts makes it valuable for high-resolution, dynamic studies in tissue architecture and biomechanics.
en
dc.format.extent
19 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Radon transform
en
dc.subject
fluorescence
en
dc.subject
second-harmonic generation
en
dc.subject
thirdharmonic generation
en
dc.subject
collagen orientation
en
dc.subject
vessel orientation
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Segmentation-free Radon transform algorithm to detect orientation and size of tissue structures in multiphoton microscopy images
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
086001
dcterms.bibliographicCitation.doi
10.1117/1.JBO.30.8.086001
dcterms.bibliographicCitation.journaltitle
Journal of Biomedical Optics
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.volume
30
dcterms.bibliographicCitation.url
https://doi.org/10.1117/1.JBO.30.8.086001
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Veterinär-Physiologie

refubium.funding
Publikationsfonds FU
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1560-2281