dc.contributor.author
Zhang, Teng
dc.contributor.author
Mazzio, Katherine A.
dc.contributor.author
Wang, Ruocun John
dc.contributor.author
Lounasvuori, Mailis
dc.contributor.author
Al-Temimy, Ameer
dc.contributor.author
Amargianou, Faidra
dc.contributor.author
Mawass, Mohamad-Assaad
dc.contributor.author
Kronast, Florian
dc.contributor.author
Toebbens, Daniel M.
dc.contributor.author
Lips, Klaus
dc.contributor.author
Petit, Tristan
dc.contributor.author
Gogotsi, Yury
dc.date.accessioned
2025-09-25T12:25:06Z
dc.date.available
2025-09-25T12:25:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49581
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49303
dc.description.abstract
Water under 2D confinement exhibits unique structural and dynamic behaviors distinct from bulk water, including phase transitions and altered hydrogen-bonding networks, making it of great scientific interest. While confinement in 2D materials like graphene, mica, or hexagonal boron nitride has been reported, their lack of intrinsic hydrophilicity or metallic conductivity limits their suitability for probing the interplay between confined water and electronic transport. MXenes, a family of 2D transition metal carbides and nitrides, overcome these limitations by combining high metallic conductivity (~104 S cm−1) with hydrophilicity, offering a unique platform to investigate confined water dynamics and their influence on electronic properties. Here, we show that temperature and confinement drive structural transitions of water within MXene interlayers, including the formation of localized ice clusters, amorphous ice, and dynamic hydrogen-bonded networks. These transformations disrupt stacking order, inducing a reversible metal-to-semiconductor transition and conductivity hysteresis in MXene films. Upon heating to 340 K, the dissociation of ice clusters restores interlayer spacing and metallic behavior. Our findings experimentally establish MXenes as an exceptional platform for studying the phase change of confined water, offering new insights into how nanoscale water dynamics modulate electronic properties and enabling the design of advanced devices with tunable interlayer interactions.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Electronic properties and devices
en
dc.subject
Two-dimensional materials
en
dc.subject
nanoconfined water
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Conductivity hysteresis in MXene driven by structural dynamics of nanoconfined water
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
7447
dcterms.bibliographicCitation.doi
10.1038/s41467-025-62892-7
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-62892-7
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert