dc.contributor.author
Doerig, Adrien
dc.contributor.author
Kietzmann, Tim C.
dc.contributor.author
Allen, Emily
dc.contributor.author
Wu, Yihan
dc.contributor.author
Naselaris, Thomas
dc.contributor.author
Kay, Kendrick
dc.contributor.author
Charest, Ian
dc.date.accessioned
2025-09-25T12:05:03Z
dc.date.available
2025-09-25T12:05:03Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49579
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49301
dc.description.abstract
The human brain extracts complex information from visual inputs, including objects, their spatial and semantic interrelations, and their interactions with the environment. However, a quantitative approach for studying this information remains elusive. Here we test whether the contextual information encoded in large language models (LLMs) is beneficial for modelling the complex visual information extracted by the brain from natural scenes. We show that LLM embeddings of scene captions successfully characterize brain activity evoked by viewing the natural scenes. This mapping captures selectivities of different brain areas and is sufficiently robust that accurate scene captions can be reconstructed from brain activity. Using carefully controlled model comparisons, we then proceed to show that the accuracy with which LLM representations match brain representations derives from the ability of LLMs to integrate complex information contained in scene captions beyond that conveyed by individual words. Finally, we train deep neural network models to transform image inputs into LLM representations. Remarkably, these networks learn representations that are better aligned with brain representations than a large number of state-of-the-art alternative models, despite being trained on orders-of-magnitude less data. Overall, our results suggest that LLM embeddings of scene captions provide a representational format that accounts for complex information extracted by the brain from visual inputs.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Cognitive neuroscience
en
dc.subject
Neural encoding
en
dc.subject.ddc
100 Philosophie und Psychologie::150 Psychologie::150 Psychologie
dc.title
High-level visual representations in the human brain are aligned with large language models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s42256-025-01072-0
dcterms.bibliographicCitation.journaltitle
Nature Machine Intelligence
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
1220
dcterms.bibliographicCitation.pageend
1234
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s42256-025-01072-0
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Allgemeine und Neurokognitive Psychologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2522-5839
refubium.resourceType.provider
WoS-Alert