dc.contributor.author
Ni, Bang
dc.contributor.author
Xiao, Lu
dc.contributor.author
Lin, Da
dc.contributor.author
Zhang, Tian- Lun
dc.contributor.author
Zhang, Qi
dc.contributor.author
Liu, Yanjie
dc.contributor.author
Chen, Quan
dc.contributor.author
Zhu, Dong
dc.contributor.author
Qian, Haifeng
dc.contributor.author
Rillig, Matthias C.
dc.contributor.author
Zhu, Yong- Guan
dc.date.accessioned
2025-09-16T13:17:12Z
dc.date.available
2025-09-16T13:17:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49327
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49049
dc.description.abstract
Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels. Our findings show that higher pesticide diversity enriches the abundance of bacterial specialists and opportunists capable of degrading or resisting pesticides, reducing the proportion of bacterial generalists in the absence of N addition. These shifts can complicate multitrophic microbial networks. Under increased pesticide diversity, selective pressure may drive bacteria to streamline their average genome size to conserve energy while enhancing C, N, P, and S metabolic capacities, thus accelerating soil nutrient loss. In comparison, N addition was found to reduce bacterial niche differentiation at higher pesticide diversity, mitigating the impacts of network complexity and functional traits associated with pesticide diversity, ultimately alleviating soil nutrient loss. Our results reveal the contrasting impacts of pesticide diversity on microbial functions under different N input scenarios and emphasize that strategic N fertilizer management can mitigate the ecological effects of pesticide use in agricultural systems.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
pesticide diversity
en
dc.subject
community assembly
en
dc.subject
network complexity
en
dc.subject
functional gene
en
dc.subject
life history strategy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Increasing pesticide diversity impairs soil microbial functions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2419917122
dcterms.bibliographicCitation.doi
10.1073/pnas.2419917122
dcterms.bibliographicCitation.journaltitle
Proceedings of the National Academy of Sciences (PNAS)
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
122
dcterms.bibliographicCitation.url
https://doi.org/10.1073/pnas.2419917122
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1091-6490
refubium.resourceType.provider
WoS-Alert