dc.contributor.author
Jin, Ruhong
dc.contributor.author
Perkowski, Nicolas
dc.date.accessioned
2025-09-16T11:17:26Z
dc.date.available
2025-09-16T11:17:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49310
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49032
dc.description.abstract
We discuss the compact support property of the rough super-Brownian motion constructed in Perkowski and Rosati (2021) as a scaling limit of a branching random walk in static random environment. The semi-linear equation corresponding to this measure-valued process is the continuous parabolic Anderson model, a singular SPDE in need of renormalization, which prevents the use of classical PDE arguments as in Englander (2006). But with the help of an interior estimation method developed in Moinat (2020), we are able to show that the compact support property also holds for rough super-Brownian motion.
en
dc.format.extent
24 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Super-Brownian Motion
en
dc.subject
Singular Stochastic PDEs
en
dc.subject
Parabolic Anderson Model
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
The compact support property of rough super Brownian motion on R2
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
104568
dcterms.bibliographicCitation.doi
10.1016/j.spa.2025.104568
dcterms.bibliographicCitation.journaltitle
Stochastic Processes and their Applications
dcterms.bibliographicCitation.volume
182
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.spa.2025.104568
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1879-209X
refubium.resourceType.provider
WoS-Alert