dc.contributor.author
Bourmancé, Lucas
dc.contributor.author
Marie, Arul
dc.contributor.author
Puppo, Rémy
dc.contributor.author
Brûlé, Sébastien
dc.contributor.author
Schaeffer, Philippe
dc.contributor.author
Toupet, Maud
dc.contributor.author
Nitsche, Ruben
dc.contributor.author
Elsaesser, Andreas
dc.contributor.author
Kish, Adrienne
dc.date.accessioned
2025-09-15T10:06:01Z
dc.date.available
2025-09-15T10:06:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49268
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48990
dc.description.abstract
Hypersaline environments, including brines and brine inclusions of evaporite crystals, are currently of great interest due to their unique preservation properties for the search for terrestrial and potentially extraterrestrial biosignatures of ancient life. However, much is still unclear about the specific effects that dictate the preservation properties of brines. Here we present the first insights into the preservation of cell envelope fragments in brines, characterizing the relative contributions of brine composition, UV photochemistry, and cellular macromolecules on biosignature preservation. Cell envelopes from the model halophile Halobacterium salinarum were used to simulate dead microbial cellular remains in hypersaline environments based on life as we currently know it. Using different Early Earth and Mars analogue brines, we show that acidic and NaCl-dominated brine compositions are more predisposed to preserving complex biosignatures from UV degradation, but that the composition of the biological material also influences this preservation. Furthermore, a combinatory effect between chaotropicity and photochemistry occurs, with the relative importance of each being brine-specific. These results provide an experimental framework for biosignature detection in hypersaline environments, emphasizing the need for laboratory simulations to evaluate preservation properties of each potential brine environment, on Earth and elsewhere in the solar system.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Biogeochemistry
en
dc.subject
Hypersaline environments
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
The salty tango of brine composition and UV photochemistry effects on Halobacterium salinarum cell envelope biosignature preservation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
602
dcterms.bibliographicCitation.doi
10.1038/s42003-025-08007-w
dcterms.bibliographicCitation.journaltitle
Communications Biology
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s42003-025-08007-w
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2399-3642
refubium.resourceType.provider
WoS-Alert