dc.contributor.author
An, Jeehye
dc.contributor.author
Wendt, Leo
dc.contributor.author
Wiese, Georg
dc.contributor.author
Herold, Tom
dc.contributor.author
Rzepka, Norman
dc.contributor.author
Mueller, Susanne
dc.contributor.author
Koch, Stefan Paul
dc.contributor.author
Hoffmann, Christian J.
dc.contributor.author
Harms, Christoph
dc.contributor.author
Boehm-Sturm, Philipp
dc.date.accessioned
2025-09-11T10:08:46Z
dc.date.available
2025-09-11T10:08:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49227
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48950
dc.description.abstract
Magnetic resonance imaging (MRI) is widely used for ischemic stroke lesion detection in mice. A challenge is that lesion segmentation often relies on manual tracing by trained experts, which is labor-intensive, time-consuming, and prone to inter- and intra-rater variability. Here, we present a fully automated ischemic stroke lesion segmentation method for mouse T2-weighted MRI data. As an end-to-end deep learning approach, the automated lesion segmentation requires very little preprocessing and works directly on the raw MRI scans. We randomly split a large dataset of 382 MRI scans into a subset (n = 293) to train the automated lesion segmentation and a subset (n = 89) to evaluate its performance. We compared Dice coefficients and accuracy of lesion volume against manual segmentation, as well as its performance on an independent dataset from an open repository with different imaging characteristics. The automated lesion segmentation produced segmentation masks with a smooth, compact, and realistic appearance that are in high agreement with manual segmentation. We report dice scores higher than the agreement between two human raters reported in previous studies, highlighting the ability to remove individual human bias and standardize the process across research studies and centers.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Deep Learning
en
dc.subject
Ischemic Stroke
en
dc.subject
Magnetic Resonance Imaging
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Deep learning-based automated lesion segmentation on mouse stroke magnetic resonance images
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41598-023-39826-8
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.volume
13
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
37587160
dcterms.isPartOf.eissn
2045-2322