dc.contributor.author
Benyoussef, Marwan
dc.date.accessioned
2025-10-08T12:40:27Z
dc.date.available
2025-10-08T12:40:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49206
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48929
dc.description.abstract
This PhD thesis investigates Hodge structures on a particular class of complex algebraic varieties known as character varieties. Our objective is to integrate a powerful result stemming
from motivic integration and the proofs of the Weil conjectures, with classical representation-theoretic point-counting techniques. In this work, we develop a hybrid approach combining
arithmetic and geometric methods to compute the Deligne-Hodge polynomials of SL2 (C)-
character varieties associated with the fundamental group of a circle bundle - referred to as
a Seifert group - over an orbifold with a single ramified point. Additionally, using an orbifold
version of the non-abelian Hodge correspondence, we derive certain topological properties of
the moduli space of trace-free Higgs bundles, with fixed determinant, over the same base orbifold.
en
dc.format.extent
2, xv, 184 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Character varieties
en
dc.subject
representation theory
en
dc.subject
Moduli of Higgs bundles
en
dc.subject
Hodge theory
en
dc.subject
Hodge-Deligne polynomials
en
dc.subject.ddc
500 Natural sciences and mathematics::510 Mathematics::510 Mathematics
dc.title
Character Varieties for Seifert Groups and Higgs Bundles over Orbifolds
dc.contributor.gender
male
dc.contributor.firstReferee
Alexander, Schmitt
dc.contributor.furtherReferee
Schaffhauser, Florent
dc.date.accepted
2025-06-24
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-49206-9
refubium.affiliation
Mathematik und Informatik
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access