dc.contributor.author
Krajnik, Žiga
dc.contributor.author
Ilievski, Enej
dc.contributor.author
Prosen, Tomaž
dc.contributor.author
Héry, Benjamin J. A.
dc.contributor.author
Pasquier, Vincent
dc.date.accessioned
2025-09-05T06:27:48Z
dc.date.available
2025-09-05T06:27:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49091
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48814
dc.description.abstract
We introduce classical many-body dynamics on a one-dimensional lattice comprising local two-body maps arranged on discrete space-time mesh that serve as discretizations of Hamiltonian dynamics with arbitrarily time-varying coupling constants. Time evolution is generated by passing an auxiliary degree of freedom along the lattice, resulting in a 'fishnet' circuit structure. We construct integrable circuits consisting of Yang-Baxter maps and demonstrate their general properties, using the Toda and anisotropic Landau-Lifschitz models as examples. Upon stochastically rescaling time, the dynamics is dominated by fluctuations and we observe solitons undergoing Brownian motion.
en
dc.format.extent
34 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
classical many-body dynamics
en
dc.subject
Integrable fishnet circuits
en
dc.subject
Brownian solitons
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Integrable fishnet circuits and Brownian solitons
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
027
dcterms.bibliographicCitation.doi
10.21468/SciPostPhys.19.1.027
dcterms.bibliographicCitation.journaltitle
SciPost Physics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
https://doi.org/10.21468/SciPostPhys.19.1.027
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2542-4653
refubium.resourceType.provider
WoS-Alert