dc.contributor.author
Noé, Frank
dc.contributor.author
Tkatchenko, Alexandre
dc.contributor.author
Müller, Klaus-Robert
dc.contributor.author
Clementi, Cecilia
dc.date.accessioned
2025-09-01T11:28:13Z
dc.date.available
2025-09-01T11:28:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49025
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48748
dc.description.abstract
Machine learning (ML) is transforming all areas of science. The complex and time-consuming calculations in molecular simulations are particularly suitable for an ML revolution and have already been profoundly affected by the application of existing ML methods. Here we review recent ML methods for molecular simulation, with particular focus on (deep) neural networks for the prediction of quantum-mechanical energies and forces, on coarse-grained molecular dynamics, on the extraction of free energy surfaces and kinetics, and on generative network approaches to sample molecular equilibrium structures and compute thermodynamics. To explain these methods and illustrate open methodological problems, we review some important principles of molecular physics and describe how they can be incorporated into ML structures. Finally, we identify and describe a list of open challenges for the interface between ML and molecular simulation.
en
dc.format.extent
30 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
machine learning
en
dc.subject
neural networks
en
dc.subject
molecular simulation
en
dc.subject
quantum mechanics
en
dc.subject
coarse graining
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Machine Learning for Molecular Simulation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1146/annurev-physchem-042018-052331
dcterms.bibliographicCitation.journaltitle
Annual Review of Physical Chemistry
dcterms.bibliographicCitation.pagestart
361
dcterms.bibliographicCitation.pageend
390
dcterms.bibliographicCitation.volume
71
dcterms.bibliographicCitation.url
https://doi.org/10.1146/annurev-physchem-042018-052331
refubium.affiliation
Mathematik und Informatik
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1545-1593
refubium.resourceType.provider
WoS-Alert