dc.contributor.author
Brachmann, Caroline
dc.contributor.author
Noack, Lena
dc.contributor.author
Baumeister, Philipp Alexander
dc.contributor.author
Sohl, Frank
dc.date.accessioned
2025-08-29T08:13:42Z
dc.date.available
2025-08-29T08:13:42Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48943
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48666
dc.description.abstract
After the magma ocean state, secondary atmospheres build up via early volcanic degassing of planetary interiors. The terrestrial planets Venus, Earth, and Mars are believed to have originated from similar source material but reveal distinct present-day atmospheric compositions, pressures, and temperatures. To investigate how such diverse atmospheres emerge, we have built a three-step model coupling mantle and atmospheric composition. The model incorporates mantle melting, melt ascent, and volcanic degassing. Additionally, it includes atmospheric equilibrium chemistry, taking into account processes such as water condensation and hydrogen escape. Key parameters such as mantle oxygen fugacity, melt production rates, surface temperature, and volatile abundance in the mantle, were varied to understand their impact on atmospheric composition and pressure. For reduced mantles with redox states below IW +1, atmospheric pressures remain strongly limited to a maximum of 2 bar due to the outgassing of predominantly light species that are prone to atmospheric escape or condensation. Above IW +1, atmospheric pressure can reach several tens of bars depending on the outgassing efficiency. For high-pressure atmospheres, CO2 is the main atmospheric species observed in our models. For oxidized low-pressure atmospheres, depending on temperature, atmospheres can be either waterrich or also CO2-dominated. For reducing atmospheres, nitrogen species tend to dominate the atmospheres, with NH3 for colder atmospheres and N2 for warmer atmospheres. CH4 becomes dominant only in a narrow parameter space at redox states around IW +0.5 to IW +2 and is favored by lower atmospheric temperatures.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Planetary atmospheres
en
dc.subject
Atmospheric composition
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Distinct types of C-H-O-N atmospheres and surface pressures depending on melt redox state and outgassing efficiency
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
104759
dcterms.bibliographicCitation.articlenumber
116450
dcterms.bibliographicCitation.doi
10.1016/j.icarus.2024.116450
dcterms.bibliographicCitation.journaltitle
Icarus
dcterms.bibliographicCitation.originalpublishername
Elsevier
dcterms.bibliographicCitation.originalpublisherplace
Amsterdam [u.a.]
dcterms.bibliographicCitation.volume
429 (2025)
dcterms.bibliographicCitation.url
https://linkinghub.elsevier.com/retrieve/pii/S0019103524005104
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0019-1035
dcterms.isPartOf.eissn
1090-2643