dc.contributor.author
Piro, Vitor C.
dc.contributor.author
Reinert, Knut
dc.date.accessioned
2025-08-28T11:52:07Z
dc.date.available
2025-08-28T11:52:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48930
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48653
dc.description.abstract
The fast growth of public genomic sequence repositories greatly contributes to the success of metagenomics. However, they are growing at a faster pace than the computational resources to use them. This challenges current methods, which struggle to take full advantage of massive and fast data generation. We propose a generational leap in performance and usability with ganon2, a sequence classification method that performs taxonomic binning and profiling for metagenomics analysis. It indexes large datasets with a small memory footprint, maintaining fast, sensitive, and precise classification results. Based on the full NCBI RefSeq and its subsets, ganon2 indices are on average 50% smaller than state-of-the-art methods. Using 16 simulated samples from various studies, including the CAMI 1+2 challenge, ganon2 achieved up to 0.15 higher median F1-score in taxonomic binning. In profiling, improvements in the F1-score median are up to 0.35, keeping a balanced L1-norm error in the abundance estimation. ganon2 is one of the fastest tools evaluated and enables the use of larger, more diverse, and up-to-date reference sets in daily microbiome analysis, improving the resolution of results. The code is open-source and available with documentation at https://github.com/pirovc/ganon.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
microbiome analysis
en
dc.subject
sequence classification method
en
dc.subject
metagenomics analysis
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
ganon2: up-to-date and scalable metagenomics analysis
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
lqaf094
dcterms.bibliographicCitation.doi
10.1093/nargab/lqaf094
dcterms.bibliographicCitation.journaltitle
NAR Genomics and Bioinformatics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.1093/nargab/lqaf094
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2631-9268
refubium.resourceType.provider
WoS-Alert