dc.contributor.author
Lehmann, Johannes
dc.contributor.author
Gomes, Carla
dc.contributor.author
Rillig, Matthias C.
dc.contributor.author
Shekhar, Shashi
dc.date.accessioned
2025-08-28T04:37:29Z
dc.date.available
2025-08-28T04:37:29Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48894
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48617
dc.description.abstract
Sustainability science increasingly requires computationally intensive predictive and decision-making tasks across varied temporal and spatial scales. We argue that these needs in sustainability science offer opportunities to develop trusted and transparent artificial intelligence (AI) based on principles that we define here as relevance, abundance, complexity, transferability, and specificity. Collaborations between AI and sustainability scientists should adopt the proposed “deep mutual learning” that integrates engagement with practitioners to build a shared incentive structure, and innovate question creation and an environment of co-creation with co-location. We emphasize a shared incentive structure that rests on fully integrating practitioners in the collaboration, including industry, municipalities, and the public. This approach will guide us towards sustainable policies with far-reaching societal benefits.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
artificial intelligence
en
dc.subject
deep mutual learning
en
dc.subject
sustainability science
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Deep mutual learning: incentives and trust through collaborative integration of artificial intelligence into sustainability science
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-08-28T02:27:31Z
dcterms.bibliographicCitation.doi
10.1039/D5SU00572H
dcterms.bibliographicCitation.journaltitle
RSC Sustainability
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.pagestart
3903
dcterms.bibliographicCitation.pageend
3909
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D5SU00572H
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2753-8125
refubium.resourceType.provider
DeepGreen