dc.contributor.author
Wille, Carolin
dc.contributor.author
Usoltcev, Maksimilian
dc.contributor.author
Eisert, Jens
dc.contributor.author
Altland, Alexander
dc.date.accessioned
2025-08-25T12:20:26Z
dc.date.available
2025-08-25T12:20:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48844
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48567
dc.description.abstract
This work proposes a minimal model extending the duality between classical statistical spin systems and fermionic systems beyond the case of free fermions. A Jordan-Wigner transformation applied to a two-dimensional tensor network maps the partition sum of a classical statistical mechanics model to a Grassmann variable integral, structurally similar to the path integral for interacting fermions in two dimensions. The resulting model is simple, featuring only two parameters: one governing spin-spin interaction (dual to effective hopping strength in the fermionic picture), the other measuring the deviation from the free fermion limit. Nevertheless, it exhibits a rich phase diagram, partially stabilized by elements of topology, and featuring three phases meeting at a multicritical point. Besides the interpretation as a spin and fermionic system, the model is closely related to loop gas and vertex models and can be interpreted as a parity-preserving (non-unitary) circuit. Its minimal construction makes it an ideal reference system for studying non-linearities in tensor networks and deriving results by means of duality.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
minimal model
en
dc.subject
minimal tensor network
en
dc.subject
free fermions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
A minimal tensor network beyond free fermions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
196
dcterms.bibliographicCitation.doi
10.21468/SciPostPhys.18.6.196
dcterms.bibliographicCitation.journaltitle
SciPost Physics
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
18
dcterms.bibliographicCitation.url
https://doi.org/10.21468/SciPostPhys.18.6.196
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2542-4653
refubium.resourceType.provider
WoS-Alert