dc.contributor.author
Karimpouli, Sadegh
dc.contributor.author
Kwiatek, Grzegorz
dc.contributor.author
Martínez-Garzón, Patricia
dc.contributor.author
Caus, Danu
dc.contributor.author
Wang, Lei
dc.contributor.author
Dresen, Georg
dc.contributor.author
Bohnhoff, Marco
dc.date.accessioned
2025-08-25T10:18:20Z
dc.date.available
2025-08-25T10:18:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48829
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48552
dc.description.abstract
Induced seismicity poses a significant challenge to the safe and sustainable development of Enhanced Geothermal Systems (EGS). This study explores the application of machine learning (ML) for forecasting cumulative seismic moment (CSM) of induced seismic events to evaluate reservoir stability in response to fluid injections. Using data from the Cooper Basin (Australia), the St1 Helsinki geothermal project (Finland), and a controlled laboratory injection experiment, we evaluate ML models that integrate catalogue and operational features with various frameworks. Results indicate that feature-rich models outperform simpler ones in complex seismic environments like the Cooper Basin and laboratory cases, where seismicity is promoted by earthquake interaction and fault reactivation. However, in scenarios like St1 Helsinki, with minimal event clustering, additional features offer limited predictive benefits. While ML models are promising, several challenges impede reliable forecasting, including data scarcity from operational wells, the extrapolation demands of cumulative output (i.e. CSM) and the difficulty of predicting abrupt CSM increases for large seismic events. Enhancing model robustness requires synthetic data augmentation and improved feature selection capable of capturing diverse reservoir dynamics. These advancements may enable more accurate near real-time forecasts of problematic induced seismic events, informing operational decisions to mitigate seismic risks while maximizing energy extraction, and hence offering a pathway for broader adoption of ML in renewable energy development and management.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en
dc.subject
Earthquake interaction, forecasting, and prediction
en
dc.subject
Induced seismicity
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Forecasting induced seismicity in enhanced geothermal systems using machine learning: challenges and opportunities
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
ggaf155
dcterms.bibliographicCitation.doi
10.1093/gji/ggaf155
dcterms.bibliographicCitation.journaltitle
Geophysical Journal International
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
242
dcterms.bibliographicCitation.url
https://doi.org/10.1093/gji/ggaf155
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geophysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1365-246X
refubium.resourceType.provider
WoS-Alert