dc.contributor.author
Djurdjevac, Ana
dc.contributor.author
Kremp, Helena
dc.contributor.author
Perkowski, Nicolas
dc.date.accessioned
2025-08-25T08:14:59Z
dc.date.available
2025-08-25T08:14:59Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48812
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48535
dc.description.abstract
In this article, we study different scaling rough path limit regimes in space and time for the Langevin dynamics on a quasi-planar fluctuating Helfrich surface. The convergence results of the processes were already proven in [Citation1]. We extend this work by proving the convergence of the Itô and Stratonovich rough path lift. For the rough path limit, there appears, typically, an area correction term to the Itô iterated integrals and, in certain regimes, to the Stratonovich iterated integrals. This yields additional information on the homogenization limit and enables us to conclude on homogenization results for diffusions driven by the Brownian motion on the membrane using the continuity of the Itô-Lyons map in rough paths topology.
en
dc.format.extent
23 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Brownian motion on a random hypersurface
en
dc.subject
lateral diffusion
en
dc.subject
Laplace-Beltrami operator
en
dc.subject
Helfrich membrane
en
dc.subject
rough stochastic homogenization
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Rough homogenization for Langevin dynamics on fluctuating Helfrich surfaces
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1080/07362994.2025.2505736
dcterms.bibliographicCitation.journaltitle
Stochastic Analysis and Applications
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
423
dcterms.bibliographicCitation.pageend
445
dcterms.bibliographicCitation.volume
43
dcterms.bibliographicCitation.url
https://doi.org/10.1080/07362994.2025.2505736
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1532-9356
refubium.resourceType.provider
WoS-Alert