dc.contributor.author
Cao, Chenfeng
dc.contributor.author
Gambetta, Filippo Maria
dc.contributor.author
Montanaro, Ashley
dc.contributor.author
Santos, Raul A.
dc.date.accessioned
2025-08-25T07:56:11Z
dc.date.available
2025-08-25T07:56:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48810
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48533
dc.description.abstract
Understanding quantum phase transitions in physical systems is fundamental to characterize their behavior at low temperatures. Achieving this requires both accessing good approximations to the ground state and identifying order parameters to distinguish different phases. Addressing these challenges, our work introduces a hybrid algorithm that combines quantum optimization with classical machine learning. This approach leverages the capability of near-term quantum computers to prepare locally trapped states through finite optimization. Specifically, we apply LASSO for identifying conventional phase transitions and the Transformer model for topological transitions, utilizing these with a sliding window scan of Hamiltonian parameters to learn appropriate order parameters and locate critical points. We validated the method with numerical simulations and real-hardware experiments on Rigetti’s Ankaa 9Q-1 quantum computer. This protocol provides a framework for investigating quantum phase transitions with shallow circuits, offering enhanced efficiency and, in some settings, higher precision-thus contributing to the broader effort to integrate near-term quantum computing and machine learning.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational science
en
dc.subject
Phase transitions and critical phenomena
en
dc.subject
Quantum information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Unveiling quantum phase transitions from traps in variational quantum algorithms
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
93
dcterms.bibliographicCitation.doi
10.1038/s41534-025-01038-5
dcterms.bibliographicCitation.journaltitle
npj Quantum Information
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41534-025-01038-5
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2056-6387
refubium.resourceType.provider
WoS-Alert