dc.contributor.author
Borzechowski, Michaela
dc.contributor.author
Weber, Simon
dc.date.accessioned
2025-08-25T06:18:53Z
dc.date.available
2025-08-25T06:18:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48798
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48521
dc.description.abstract
Klaus showed that the ORIENTED MATROID COMPLEMENTARITY PROBLEM (OMCP) can be solved by a reduction to the problem of sink-finding in a unique sink orientation (USO) if the input is promised to be given by a non-degenerate extension of a P-matroid. In this paper, we investigate the effect of degeneracy on this reduction. On the one hand, this understanding of degeneracies allows us to prove a linear lower bound on the number of vertex evaluations required for sink-finding in Pmatroid USOs, the set of USOs obtainable through Klaus' reduction. On the other hand, it allows us to adjust Klaus' reduction to also work with degenerate instances. Furthermore, we introduce a total search version of the P-MATROID ORIENTED MATROID COMPLEMENTARITY PROBLEM (P-OMCP). Given any extension of any oriented matroid .M, by reduction to a total search version of USO sink-finding we can either solve the OMCP, or provide a polynomial-time verifiable certificate that .M is not a P-matroid. This places the total search version of the P-OMCP in the complexity class Unique End of Potential Line (UEOPL).
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Oriented matroid
en
dc.subject
Complementarity problem
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
On degeneracy in the P-matroid oriented matroid complementarity problem
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
100891
dcterms.bibliographicCitation.doi
10.1016/j.disopt.2025.100891
dcterms.bibliographicCitation.journaltitle
Discrete Optimization
dcterms.bibliographicCitation.volume
57
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.disopt.2025.100891
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1873-636X
refubium.resourceType.provider
WoS-Alert