dc.contributor.author
Lorenz, Rike
dc.contributor.author
Becker, Nico
dc.contributor.author
Gardiner, Barry
dc.contributor.author
Ulbrich, Uwe
dc.contributor.author
Hanewinkel, Marc
dc.contributor.author
Schmitz, Benjamin
dc.date.accessioned
2025-08-14T11:56:53Z
dc.date.available
2025-08-14T11:56:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48702
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48426
dc.description.abstract
Strong winter wind storms can lead to billions of euros in forestry losses, disrupt train services and necessitate millions of euros in spending on vegetation management along the German railway system. Therefore, understanding the link between tree fall and wind is crucial.
Existing tree fall studies often emphasize tree and soil factors more than meteorology. Using a tree fall dataset from Deutsche Bahn (DB; 2017–2021) and meteorological data from the ERA5 reanalysis and RADOLAN (Routineverfahren zur Online-Aneichung der Radarniederschlagsdaten mit Hilfe von automatischen Bodenniederschlagsstationen (Ombrometer)) radar, we employed stepwise model selection to build a logistic regression model predicting the risk of a tree falling on a railway line in a 31 km grid cell.
While the daily maximum gust speed (the maximum wind speed in a model time step at 10 m height) is the strongest risk factor, we also found that the duration of strong wind speeds (wind speeds above the local 90th percentile), the gust factor (the ratio of the maximum daily gust wind speed to the mean daily gust speed), precipitation, soil water volume, air density and the precipitation sum of the previous year are impactful. Therefore, our findings suggest that high wind speeds, a low gust factor and a prolonged duration of strong winds, especially in combination with wet conditions (high precipitation and high soil moisture) and high air density, increase tree fall risk. Incorporating meteorological parameters linked to local climatological conditions (through anomalies or in relation to local percentiles) improved the model accuracy. This indicates the importance of considering tree adaptation to the environment.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
railway lines
en
dc.subject
impact of wind
en
dc.subject
meteorological factors
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Tree fall along railway lines: modelling the impact of wind and other meteorological factors
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.5194/nhess-25-2179-2025
dcterms.bibliographicCitation.issue
7
dcterms.bibliographicCitation.journaltitle
Natural Hazards and Earth System Sciences
dcterms.bibliographicCitation.originalpublishername
Copernicus Publications
dcterms.bibliographicCitation.pagestart
2179
dcterms.bibliographicCitation.pageend
2196
dcterms.bibliographicCitation.volume
2025/25
dcterms.bibliographicCitation.url
https://doi.org/10.5194/nhess-25-2179-2025
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie

refubium.funding.id
2100034578
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1684-9981