dc.contributor.author
Bligh, Margot
dc.contributor.author
Silva-Solar, Sebastian
dc.contributor.author
Biehler, Linda
dc.contributor.author
Fitzgerald, Christopher C.J.
dc.contributor.author
Crawford, Conor J.
dc.contributor.author
Schultz-Johansen, Mikkel
dc.contributor.author
Niggemeier, Sofie
dc.contributor.author
Seeberger, Peter H.
dc.contributor.author
Liebeke, Manuel
dc.contributor.author
Hehemann, Jan-Hendrik
dc.date.accessioned
2025-08-13T06:41:02Z
dc.date.available
2025-08-13T06:41:02Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48686
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48410
dc.description.abstract
Carbohydrates are fundamental molecules of life that are involved in virtually all biological processes. The chemical diversity of glycanscarbohydrate chainsenables diverse functions but also challenges analytics. Annotation of glycans in mass spectrometry (MS) data relies heavily on experimental databases or manual calculations, hindering the discovery of novel glycan compositions and structures. Here, we introduce GlycoAnnotateRa package in the open-source programming language Rfor de novo annotation of glycan compositions in MS data. GlycoAnnotateR calculates all possible monomer and modification combinations, which are then filtered against a defined set of chemical rules to provide biologically relevant compositions. The “glycoPredict” function can return compositions for oligosaccharides ranging from 1 to 22 monomers in length while accounting for four different modifications in under 10 min with less than 4 GB of random-access memory (RAM). Here, three case studies demonstrate the efficacy and versatility of GlycoAnnotateR: (1) accurate identification of mono- and oligosaccharide standards, (2) characterization of sulfated fucan oligosaccharides obtained by enzymatic digestion of fucoidan, a complex algal glycan, and (3) reproduction and expansion of glycan annotations for a published mouse lung MALDI-MS imaging data set previously annotated by NGlycDB. GlycoAnnotateR rapidly provides accurate annotations and complements existing R packages for MS data processing, enabling metabolomic and glycomic data integration. This combinatorial, rule-based approach enhances glycan annotation capabilities and supports hypothesis generation in glycoscience, expanding our ability to explore the chemical space of glycan diversity.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
carbohydrates
en
dc.subject
mass spectrometry
en
dc.subject
R, annotation tool
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
De Novo Glycan Annotation of Mass Spectrometry Data
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-08-12T13:05:45Z
dcterms.bibliographicCitation.doi
10.1021/jasms.5c00093
dcterms.bibliographicCitation.journaltitle
Journal of the American Society for Mass Spectrometry
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
1686
dcterms.bibliographicCitation.pageend
1695
dcterms.bibliographicCitation.volume
36
dcterms.bibliographicCitation.url
https://doi.org/10.1021/jasms.5c00093
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1044-0305
dcterms.isPartOf.eissn
1879-1123
refubium.resourceType.provider
DeepGreen