dc.contributor.author
Scheiger, Chatrawee
dc.contributor.author
Pöhls, Jonas F.
dc.contributor.author
Mostaghimi, Mersad
dc.contributor.author
Pilz, Lena
dc.contributor.author
Kozlowska, Mariana
dc.contributor.author
Liu, Yidong
dc.contributor.author
Heinke, Lars
dc.contributor.author
Bufon, Carlos Cesar Bof
dc.contributor.author
Weitz, R. Thomas
dc.contributor.author
Wenzel, Wolfgang
dc.contributor.author
Wöll, Christof
dc.date.accessioned
2025-08-13T06:23:31Z
dc.date.available
2025-08-13T06:23:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48683
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48407
dc.description.abstract
Metal–organic frameworks have garnered interest for over 25 years in energy and electronics, yet their adoption in devices has been hindered by low electrical conductivity, largely attributed to activated transport. Our study demonstrates a significant shift, revealing metallic conductivity in Cu3(HHTP)2 thin films—240 S m−1 at room temperature and 300 S m−1 at 100 K, a departure from its presumed semiconductive nature. Achieved through robotic, AI-based layer-by-layer assembly in a self-driving laboratory, this method produces SURMOFs with minimal defects, optimized via rapid surrogate characterization techniques. Our research, supported by both electronic structure calculations and experimental verification, identifies a persistent Dirac cone in the hexagonal D6h symmetry of 2D sheets as crucial for the observed metallic behavior. Notably, even with ABAB stacking in the bulk, this Dirac cone feature maintains metallic conductivity, enhancing at lower temperatures. This breakthrough not only clarifies the conduction mechanism in Cu3(HHTP)2 but also highlights the SDL's potential in developing high-quality MOF thin films for future applications. Our findings indicate that tailoring the Dirac cone's energy could lead to a new class of highly conductive, metallic MOFs.
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Metal–organic frameworks
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Dirac-cone induced metallic conductivity in Cu3(HHTP)2: high-quality MOF thin films fabricated via ML-driven robotic synthesis
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-08-12T13:05:31Z
dcterms.bibliographicCitation.doi
10.1039/D5MH00813A
dcterms.bibliographicCitation.journaltitle
Materials Horizons
dcterms.bibliographicCitation.number
16
dcterms.bibliographicCitation.pagestart
6189
dcterms.bibliographicCitation.pageend
6194
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D5MH00813A
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2051-6347
dcterms.isPartOf.eissn
2051-6355
refubium.resourceType.provider
DeepGreen