dc.contributor.author
Elez, Katarina
dc.contributor.author
Hempel, Tim
dc.contributor.author
Shrimp, Jonathan H.
dc.contributor.author
Moor, Nicole
dc.contributor.author
Raich, Lluís
dc.contributor.author
Rocha, Cheila
dc.contributor.author
Winter, Robin
dc.contributor.author
Le, Tuan
dc.contributor.author
Pöhlmann, Stefan
dc.contributor.author
Hoffmann, Markus
dc.contributor.author
Hall, Matthew D.
dc.contributor.author
Noé, Frank
dc.date.accessioned
2025-08-08T09:26:28Z
dc.date.available
2025-08-08T09:26:28Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48627
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48351
dc.description.abstract
Drug screening resembles finding a needle in a haystack: identifying a few effective inhibitors from a large pool of potential drugs. Large experimental screens are expensive and time-consuming, while virtual screening trades off computational efficiency and experimental correlation. Here we develop a framework that combines molecular dynamics (MD) simulations with active learning. Two components drastically reduce the number of candidates needing experimental testing to less than 20: (1) a target-specific score that evaluates target inhibition and (2) extensive MD simulations to generate a receptor ensemble. The active learning approach reduces the number of compounds requiring experimental testing to less than 10 and cuts computational costs by ∼29-fold. Using this framework, we discovered BMS-262084 as a potent inhibitor of TMPRSS2 (IC50 = 1.82 nM). Cell-based experiments confirmed BMS-262084’s efficacy in blocking entry of various SARS-CoV-2 variants and other coronaviruses. The identified inhibitor holds promise for treating viral and other diseases involving TMPRSS2.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational chemistry
en
dc.subject
High-throughput screening
en
dc.subject
Structure-based drug design
en
dc.subject
Virtual drug screening
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Simulations and active learning enable efficient identification of an experimentally-validated broad coronavirus inhibitor
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
6949
dcterms.bibliographicCitation.doi
10.1038/s41467-025-62139-5
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-62139-5
refubium.affiliation
Mathematik und Informatik
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723