dc.contributor.author
Flügge, Tabea
dc.contributor.author
Gaudin, Robert
dc.contributor.author
Sabatakakis, Antonis
dc.contributor.author
Tröltzsch, Daniel
dc.contributor.author
Heiland, Max
dc.contributor.author
van Nistelrooij, Niels
dc.contributor.author
Vinayahalingam, Shankeeth
dc.date.accessioned
2025-08-06T15:56:09Z
dc.date.available
2025-08-06T15:56:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48606
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48330
dc.description.abstract
Oral squamous cell carcinoma (OSCC) is amongst the most common malignancies, with an estimated incidence of 377,000 and 177,000 deaths worldwide. The interval between the onset of symptoms and the start of adequate treatment is directly related to tumor stage and 5-year-survival rates of patients. Early detection is therefore crucial for efficient cancer therapy. This study aims to detect OSCC on clinical photographs (CP) automatically. 1406 CP(s) were manually annotated and labeled as a reference. A deep-learning approach based on Swin-Transformer was trained and validated on 1265 CP(s). Subsequently, the trained algorithm was applied to a test set consisting of 141 CP(s). The classification accuracy and the area-under-the-curve (AUC) were calculated. The proposed method achieved a classification accuracy of 0.986 and an AUC of 0.99 for classifying OSCC on clinical photographs. Deep learning-based assistance of clinicians may raise the rate of early detection of oral cancer and hence the survival rate and quality of life of patients.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
oral squamous cell carcinoma (OSCC)
en
dc.subject
head and neck neoplasms
en
dc.subject
mouth neoplasms
en
dc.subject
quality of life
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Detection of oral squamous cell carcinoma in clinical photographs using a vision transformer
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2296
dcterms.bibliographicCitation.doi
10.1038/s41598-023-29204-9
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.volume
13
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
36759684
dcterms.isPartOf.eissn
2045-2322