dc.contributor.author
Viezzer, Darian
dc.contributor.author
Hadler, Thomas
dc.contributor.author
Ammann, Clemens
dc.contributor.author
Blaszczyk, Edyta
dc.contributor.author
Fenski, Maximilian
dc.contributor.author
Grandy, Thomas Hiroshi
dc.contributor.author
Wetzl, Jens
dc.contributor.author
Lange, Steffen
dc.contributor.author
Schulz-Menger, Jeanette
dc.date.accessioned
2025-08-06T15:11:40Z
dc.date.available
2025-08-06T15:11:40Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48602
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48326
dc.description.abstract
The manual and often time-consuming segmentation of the myocardium in cardiovascular magnetic resonance is increasingly automated using convolutional neural networks (CNNs). This study proposes a cascaded segmentation (CASEG) approach to improve automatic image segmentation quality. First, an object detection algorithm predicts a bounding box (BB) for the left ventricular myocardium whose 1.5 times enlargement defines the region of interest (ROI). Then, the ROI image section is fed into a U-Net based segmentation. Two CASEG variants were evaluated: one using the ROI cropped image solely (cropU) and the other using a 2-channel-image additionally containing the original BB image section (crinU). Both were compared to a classical U-Net segmentation (refU). All networks share the same hyperparameters and were tested on basal and midventricular slices of native and contrast enhanced (CE) MOLLI T1 maps. Dice Similarity Coefficient improved significantly (p < 0.05) in cropU and crinU compared to refU (81.06%, 81.22%, 72.79% for native and 80.70%, 79.18%, 71.41% for CE data), while no significant improvement (p < 0.05) was achieved in the mean absolute error of the T1 time (11.94 ms, 12.45 ms, 14.22 ms for native and 5.32 ms, 6.07 ms, 5.89 ms for CE data). In conclusion, CASEG provides an improved geometric concordance but needs further improvement in the quantitative outcome.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
magnetic resonance imaging (MRI)
en
dc.subject
magnetic resonance spectroscopy (MRS)
en
dc.subject
image processing
en
dc.subject
neural networks
en
dc.subject
artificial intelligence
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Introduction of a cascaded segmentation pipeline for parametric T1 mapping in cardiovascular magnetic resonance to improve segmentation performance
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2103
dcterms.bibliographicCitation.doi
10.1038/s41598-023-28975-5
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.volume
13
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
36746989
dcterms.isPartOf.eissn
2045-2322