dc.contributor.author
Wagner, Paul D.
dc.contributor.author
Duethmann, Doris
dc.contributor.author
Kiesel, Jens
dc.contributor.author
Pool, Sandra
dc.contributor.author
Hrachowitz, Markus
dc.contributor.author
Ceola, Serena
dc.contributor.author
Herzog, Anna
dc.contributor.author
Houska, Tobias
dc.contributor.author
Loritz, Ralf
dc.contributor.author
Spieler, Diana
dc.contributor.author
Staudinger, Maria
dc.contributor.author
Tarasova, Larisa
dc.contributor.author
Thober, Stephan
dc.contributor.author
Fohrer, Nicola
dc.contributor.author
Tetzlaff, Doerthe
dc.contributor.author
Wagener, Thorsten
dc.contributor.author
Guse, Björn
dc.date.accessioned
2025-07-29T06:47:15Z
dc.date.available
2025-07-29T06:47:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48451
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48173
dc.description.abstract
While measured streamflow is commonly used for hydrological model evaluation and calibration, an increasing amount of data on additional hydrological variables is available. These data have the potential to improve process consistency in hydrological modeling and consequently for predictions under change, as well as in data‐scarce or ungauged regions. Here, we show how these hydrological data beyond streamflow are currently used for model evaluation and calibration. We consider storage and flux variables, namely snow, soil moisture, groundwater level, terrestrial water storage, evapotranspiration, and altimetric water level. We aim at summarizing the state‐of‐the‐art and providing guidance for the use of additional hydrological variables for model evaluation and calibration. Based on a review of the current literature, we summarize observation methods and uncertainties of currently available data sets, challenges regarding their implementation, and benefits for model consistency. The focus is on catchment modeling studies with study areas ranging from a few km 2 to ~500,000 km 2 . We discuss challenges for implementing alternative variables that are related to differences in the spatio‐temporal resolution of observations and models, as well as to variable‐specific features, for example, discrepancy between observed and simulated variables. We further discuss advancements required to deal with uncertainties of the hydrological data and to integrate multiple, potentially inconsistent datasets. The increased model consistency and improvement shown by most reviewed studies regarding the additional variables often come at the cost of a slight decrease in streamflow model performance.
en
dc.format.extent
26 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Catchment Hydrology
en
dc.subject
Hydrological Modeling
en
dc.subject
In‐situ data
en
dc.subject
Multi‐variable Calibration
en
dc.subject
Satellite‐derived data
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
The Unexploited Treasures of Hydrological Observations Beyond Streamflow for Catchment Modeling
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-07-18T16:10:47Z
dcterms.bibliographicCitation.articlenumber
e70018
dcterms.bibliographicCitation.doi
10.1002/wat2.70018
dcterms.bibliographicCitation.journaltitle
Wiley Interdisciplinary Reviews: Water
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1002/wat2.70018
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geographische Wissenschaften / Fachrichtung Angewandte Physische Geographie, Umwelthydrologie und Ressourcenmanagement
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2049-1948
refubium.resourceType.provider
DeepGreen