dc.contributor.author
Chen, Ziliang
dc.contributor.author
Yang, Hongyuan
dc.contributor.author
Hausmann, J. Niklas
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Hlukhyy, Viktor
dc.contributor.author
Dau, Holger
dc.contributor.author
Driess, Matthias
dc.contributor.author
Menezes, Prashanth W.
dc.date.accessioned
2025-07-28T12:00:27Z
dc.date.available
2025-07-28T12:00:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48428
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48150
dc.description.abstract
Discovering novel oxygen evolution reaction (OER) (pre)catalysts with exceptional catalytic activity and long‐term stability is pivotal for advancing decarbonization technologies. In this study, we present the ternary Ba8Ni6Ge40 phase with an open clathrate structure exhibiting remarkable performance in alkaline OER. When integrated into an alkaline water electrolyzer, this clathrate precatalyst achieves high stability under a sustained current density of ∼550 mA cm−2 for 10 days. By combining in situ Raman spectroscopy, quasi in situ X‐ray absorption spectroscopy, and (micro)structural characterizations, we elucidate the complete electrochemical transformation of Ba8Ni6Ge40 (~90 weight% leaching) forming ultrathin nanosheets composed of a porous and defective NiOOH nanostructure with maximized accessible active site exposure. Notably, a reversible phase transition mainly between Ni(OH)2 and NiOOH has also been established in the electrochemical redox process. Meanwhile, the successful application of the model Ba8Ni6Ge40 precatalyst represents a promising new class of functional inorganic materials for water electrolysis.
en
dc.format.extent
11 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Bulk intermetallic
en
dc.subject
Oxygen evolution reaction
en
dc.subject
Phase reconstruction
en
dc.subject
Reversible transformation
en
dc.subject
Ternary clathrate
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Ba–Ni–Ge Clathrate Transformation Maximizes Active Site Utilization of Nickel for Enhanced Oxygen Evolution Performance
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-07-18T13:41:42Z
dcterms.bibliographicCitation.articlenumber
e202424743
dcterms.bibliographicCitation.doi
10.1002/anie.202424743
dcterms.bibliographicCitation.journaltitle
Angewandte Chemie International Edition
dcterms.bibliographicCitation.number
23
dcterms.bibliographicCitation.volume
64
dcterms.bibliographicCitation.url
https://doi.org/10.1002/anie.202424743
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1433-7851
dcterms.isPartOf.eissn
1521-3773
refubium.resourceType.provider
DeepGreen