dc.contributor.author
Manske, Lukas
dc.contributor.author
Ruedas, Thomas
dc.contributor.author
Plesa, Ana‐Catalina
dc.contributor.author
Baumeister, Philipp
dc.contributor.author
Tosi, Nicola
dc.contributor.author
Artemieva, Natalia
dc.contributor.author
Wünnemann, Kai
dc.date.accessioned
2025-07-28T11:49:35Z
dc.date.available
2025-07-28T11:49:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48426
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48148
dc.description.abstract
We investigate the melt production of planetary impacts as a function of planet size ( R/REarth = 0.1–1.5), impactor size ( L = 1–1,000 km), and core size ratio ( Rcore/R = 0.2–0.8) using a combination of parameterized convection models and fully dynamical 2D impact simulations. To this end, we introduce a new method to determine impact‐induced melt volumes which we normalize by the impactor volume for better comparability. We find that this normalized melt production, or melting efficiency, is enhanced for large planets when struck by smaller impactors, while for small planets, melting efficiency is elevated when impacted by larger impactors. This diverging behavior can be explained by the thickness of the planets' thermal boundary layer and the shapes of their thermal and lithostatic pressure profiles. We also find that melting efficiency maxima are usually highest on Earth‐size planets. We show that the melting efficiency is only affected by core size ratio for large cores and older planets, where melt production is decreased significantly compared to smaller core size ratios. Projecting the lunar impactor flux on the generic planets, we find that Moon‐sized planets produce the most melt throughout their evolution, relative to planet volume. Contrary to previous scaling laws, our method accounts for melt production by decompression or plastic work in addition to shock melting. We find that traditional scaling laws underestimate melt production on length scales where variations in the target planets' lithology, temperature, and lithostatic pressure become significant. We propose empirical formulas to predict melt generation as a function of radial structure and thermal age.
en
dc.format.extent
30 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
impact heating
en
dc.subject
numerical modeling
en
dc.subject
melt quantification
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
The Influence of Interior Structure and Thermal State on Impact Melt Generation Upon Large Impacts Onto Terrestrial Planets
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-07-18T13:14:41Z
dcterms.bibliographicCitation.articlenumber
e2024JE008481
dcterms.bibliographicCitation.doi
10.1029/2024JE008481
dcterms.bibliographicCitation.journaltitle
Journal of Geophysical Research: Planets
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.volume
130
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2024JE008481
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2169-9097
dcterms.isPartOf.eissn
2169-9100
refubium.resourceType.provider
DeepGreen