dc.contributor.author
Charron, Nicholas E.
dc.contributor.author
Bonneau, Klara
dc.contributor.author
Pasos-Trejo, Aldo S.
dc.contributor.author
Guljas, Andrea
dc.contributor.author
Chen, Yaoyi
dc.contributor.author
Musil, Félix
dc.contributor.author
Venturin, Jacopo
dc.contributor.author
Gusew, Daria
dc.contributor.author
Zaporozhets, Iryna
dc.contributor.author
Krämer, Andreas
dc.contributor.author
Templeton, Clark
dc.contributor.author
Kelkar, Atharva
dc.contributor.author
Durumeric, Aleksander E. P.
dc.contributor.author
Noé, Frank
dc.contributor.author
Clementi, Cecilia
dc.date.accessioned
2025-08-14T11:12:09Z
dc.date.available
2025-08-14T11:12:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48287
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48010
dc.description.abstract
The most popular and universally predictive protein simulation models employ all-atom molecular dynamics, but they come at extreme computational cost. The development of a universal, computationally efficient coarse-grained (CG) model with similar prediction performance has been a long-standing challenge. By combining recent deep-learning methods with a large and diverse training set of all-atom protein simulations, we here develop a bottom–up CG force field with chemical transferability, which can be used for extrapolative molecular dynamics on new sequences not used during model parameterization. We demonstrate that the model successfully predicts metastable states of folded, unfolded and intermediate structures, the fluctuations of intrinsically disordered proteins and relative folding free energies of protein mutants, while being several orders of magnitude faster than an all-atom model. This showcases the feasibility of a universal and computationally efficient machine-learned CG model for proteins.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational biophysics
en
dc.subject
Computational chemistry
en
dc.subject
protein simulation model
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Navigating protein landscapes with a machine-learned transferable coarse-grained model
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41557-025-01874-0
dcterms.bibliographicCitation.journaltitle
Nature Chemistry
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
1284
dcterms.bibliographicCitation.pageend
1292
dcterms.bibliographicCitation.volume
17
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41557-025-01874-0
refubium.affiliation
Physik
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1755-4349