dc.contributor.author
Petrescu, Alexandru
dc.contributor.author
Truica, Ciprian-Octavian
dc.contributor.author
Apostol, Elena-Simona
dc.contributor.author
Paschke, Adrian
dc.date.accessioned
2025-07-04T10:26:09Z
dc.date.available
2025-07-04T10:26:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48122
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47844
dc.description.abstract
As global digitization continues to grow, technology becomes more affordable and easier to use, and social media platforms thrive, becoming the new means of spreading information and news. Communities are built around sharing and discussing current events. Within these communities, users are enabled to share their opinions about each event. Using Sentiment Analysis to understand the polarity of each message belonging to an event, as well as the entire event, can help to better understand the general and individual feelings of significant trends and the dynamics on online social networks. In this context, we propose a new ensemble architecture, EDSA-Ensemble (Event Detection Sentiment Analysis Ensemble), that uses Event Detection and Sentiment Analysis to improve the detection of the polarity for current events from Social Media. For Event Detection, we use techniques based on Information Diffusion taking into account both the time span and the topics. To detect the polarity of each event, we preprocess the text and employ several Machine and Deep Learning models to create an ensemble model. The preprocessing step includes several word representation models: raw frequency, TFIDF, Word2Vec, and Transformers. The proposed EDSA-Ensemble architecture improves the event sentiment classification over the individual Machine and Deep Learning models.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Ensemble model
en
dc.subject
event detection
en
dc.subject
sentiment analysis
en
dc.subject
social networks analysis
en
dc.subject
event sentiment analysis
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
EDSA-Ensemble: An Event Detection Sentiment Analysis Ensemble Architecture
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1109/TAFFC.2024.3434355
dcterms.bibliographicCitation.journaltitle
IEEE Transactions on Affective Computing
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
555
dcterms.bibliographicCitation.pageend
572
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1109/TAFFC.2024.3434355
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1949-3045
refubium.resourceType.provider
WoS-Alert