dc.contributor.author
Aimet, Stefan
dc.contributor.author
Tajik, Mohammadamin
dc.contributor.author
Tournaire, Gabrielle
dc.contributor.author
Schüttelkopf, Philipp
dc.contributor.author
Sabino, João
dc.contributor.author
Sotiriadis, Spyros
dc.contributor.author
Guarnieri, Giacomo
dc.contributor.author
Schmiedmayer, Jörg
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2025-08-14T10:27:41Z
dc.date.available
2025-08-14T10:27:41Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47993
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47711
dc.description.abstract
Landauer’s principle bridges information theory and thermodynamics by linking the entropy change of a system during a process to the average energy dissipated to its environment. Although typically discussed in the context of erasing a single bit of information, Landauer’s principle can be generalized to characterize irreversibility in out-of-equilibrium processes, such as those involving complex quantum many-body systems. Specifically, the relation between the entropy change of a system and the energy dissipated to its environment can be decomposed into changes in quantum mutual information and a difference in the relative entropies of the environment. Here, we experimentally probe Landauer’s principle in the quantum many-body regime using a quantum field simulator of ultracold Bose gases. Employing a dynamical tomographic reconstruction scheme, we track the temporal evolution of the quantum field following a global mass quench from a massive to a massless Klein–Gordon model and analyse the thermodynamic and information-theoretic contributions to a generalized entropy production for various system–environment partitions of the composite system. Our results verify the quantum field theoretical calculations, interpreted using a semi-classical quasiparticle picture. Our work demonstrates the ability of ultracold atom-based quantum field simulators to experimentally investigate quantum thermodynamics.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Bose–Einstein condensates
en
dc.subject
Quantum information
en
dc.subject
Quantum mechanics
en
dc.subject
Quantum simulation
en
dc.subject
Thermodynamics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Experimentally probing Landauer’s principle in the quantum many-body regime
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41567-025-02930-9
dcterms.bibliographicCitation.journaltitle
Nature Physics
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
1326
dcterms.bibliographicCitation.pageend
1331
dcterms.bibliographicCitation.volume
21
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41567-025-02930-9
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.funding
Springer Nature DEAL
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1745-2481