dc.contributor.author
Dong, Guozhi
dc.contributor.author
Hintermüller, Michael
dc.contributor.author
Papafitsoros, Kostas
dc.contributor.author
Völkner, Kathrin
dc.date.accessioned
2025-06-30T05:13:27Z
dc.date.available
2025-06-30T05:13:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47858
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47576
dc.description.abstract
In this paper we study the optimal control of a class of semilinear elliptic partial differential equations which have nonlinear constituents that are only accessible by data and are approximated by nonsmooth ReLU neural networks. The optimal control problem is studied in detail. In particular, the existence and uniqueness of the state equation are shown, and continuity as well as directional differentiability properties of the corresponding control-to-state map are established. Based on approximation capabilities of the pertinent networks, we address fundamental questions regarding approximating properties of the learning-informed control-to-state map and the solution of the corresponding optimal control problem. Finally, several stationarity conditions are derived based on different notions of generalized differentiability.
en
dc.format.extent
35 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Data-driven models
en
dc.subject
neural networks
en
dc.subject
nonsmooth partial differential equations
en
dc.subject
optimal control
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
First-Order Conditions for the Optimal Control of Learning-Informed Nonsmooth PDEs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1080/01630563.2025.2488796
dcterms.bibliographicCitation.journaltitle
Numerical Functional Analysis and Optimization
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.pagestart
505
dcterms.bibliographicCitation.pageend
539
dcterms.bibliographicCitation.volume
46
dcterms.bibliographicCitation.url
https://doi.org/10.1080/01630563.2025.2488796
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1532-2467
refubium.resourceType.provider
WoS-Alert