dc.contributor.author
Bazahica, Laura
dc.contributor.author
Kaarnioja, Vesa
dc.contributor.author
Roininen, Lassi
dc.date.accessioned
2025-06-04T07:28:47Z
dc.date.available
2025-06-04T07:28:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47819
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47537
dc.description.abstract
The theoretical development of quasi-Monte Carlo (QMC) methods for uncertainty quantification of partial differential equations (PDEs) is typically centered around simplified model problems such as elliptic PDEs subject to homogeneous zero Dirichlet boundary conditions. In this paper, we present a theoretical treatment of the application of randomly shifted rank-1 lattice rules to electrical impedance tomography (EIT). EIT is an imaging modality, where the goal is to reconstruct the interior conductivity of an object based on electrode measurements of current and voltage taken at the boundary of the object. This is an inverse problem, which we tackle using the Bayesian statistical inversion paradigm. As the reconstruction, we consider QMC integration to approximate the unknown conductivity given current and voltage measurements. We prove under moderate assumptions placed on the parameterization of the unknown conductivity that the QMC approximation of the reconstructed estimate has a dimension-independent, faster-than-Monte Carlo cubature convergence rate. Finally, we present numerical results for examples computed using simulated measurement data.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
electrical impedance tomography
en
dc.subject
Bayesian inversion
en
dc.subject
complete electrode model
en
dc.subject
inaccurate measurement model
en
dc.subject
uncertainty quantification
en
dc.subject
quasi-Monte Carlo method
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Uncertainty quantification for electrical impedance tomography using quasi-Monte Carlo methods
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
065002
dcterms.bibliographicCitation.doi
10.1088/1361-6420/add6d0
dcterms.bibliographicCitation.journaltitle
Inverse Problems
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
41
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6420/add6d0
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1361-6420
refubium.resourceType.provider
WoS-Alert