dc.contributor.author
dos Santos, LuizaB. F.
dc.contributor.author
Svitlyk, Volodymyr
dc.contributor.author
Richter, Selina
dc.contributor.author
Hennig, Christoph
dc.contributor.author
Müller, Katharina
dc.contributor.author
Bazarkina, Elena F.
dc.contributor.author
Kvashnina, Kristina O.
dc.contributor.author
Stumpf, Thorsten
dc.contributor.author
Huittinen, Nina
dc.date.accessioned
2025-05-26T06:10:31Z
dc.date.available
2025-05-26T06:10:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47739
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47457
dc.description.abstract
The ZrO2–CeO2 system is fundamental to various technological applications, yet unresolved questions persist regarding cation miscibility and the occurrence of metastable phases in the Zr1–xCexO2 phase diagram. This work addresses these gaps through a comprehensive investigation of Zr1–xCexO2 compositions with varying cerium concentrations and incorporating Eu3+ as a luminescent probe. Synchrotron powder X-ray diffraction analysis unveiled a miscibility gap between 20 and 50 mol % cerium. Beyond this gap, the formation of solid solutions and multiple crystalline phases was observed, including tetragonal prime (t′) and tetragonal double prime (t″) structures, depending on cerium content. Raman investigations revealed a unique distortion band in all compositions containing the t′ phase. Our high energy resolution fluorescence detected X-ray absorption near edge structure spectroscopy (HERFD-XANES) analysis implies that this feature results from oxygen ion displacement in the t′ structure. Luminescence spectroscopy of the europium environment revealed distinct excitation and emission spectra across the various crystal phases, enabling unambiguous identification of all metastable phases. These findings highlight the complex polymorphism of the ZrO2–CeO2 system. The ability to precisely control phase composition offers significant potential for optimizing properties for diverse applications, including oxygen sensors, three-way catalysts, and solid oxide fuel cells for clean, sustainable energy generation.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Crystal structure
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Exploring Metastable Phases in Cerium-Doped Zirconia: Insights from X‑ray Diffraction, Raman, X‑ray Absorption, and Luminescence Spectroscopy
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-05-23T11:33:00Z
dcterms.bibliographicCitation.doi
10.1021/acs.inorgchem.5c00865
dcterms.bibliographicCitation.journaltitle
Inorganic Chemistry
dcterms.bibliographicCitation.number
19
dcterms.bibliographicCitation.pagestart
9670
dcterms.bibliographicCitation.pageend
9683
dcterms.bibliographicCitation.volume
64
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.inorgchem.5c00865
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0020-1669
dcterms.isPartOf.eissn
1520-510X
refubium.resourceType.provider
DeepGreen