dc.contributor.author
Alcolea-Rodriguez, Victor
dc.contributor.author
Simeone, Felice C.
dc.contributor.author
Dumit, Verónica I.
dc.contributor.author
Faccani, Lara
dc.contributor.author
Toledo, Victoria
dc.contributor.author
Haase, Andrea
dc.contributor.author
Coca-López, Nicolas
dc.contributor.author
Portela, Raquel
dc.contributor.author
Bañares, Miguel A.
dc.date.accessioned
2025-05-16T07:18:09Z
dc.date.available
2025-05-16T07:18:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47675
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47393
dc.description.abstract
The increasing production of engineered nanomaterials (ENMs) raises significant concerns about human and environmental exposure, making it essential to understand the mechanisms of their interaction with biological systems to manage the associated risks. To address this, we propose categorizing ENM reactivity using in chemico methodologies. Surface analysis through methanol chemisorption and temperature-programmed surface reaction allows for the determination of reactive surface sites, providing accurate estimates of effective ENM doses in toxicity studies. Additionally, antioxidant consumption assays (dithiothreitol, cysteine, and glutathione) and reactive oxygen species (ROS) generation assays (RNO and DCFH2-DA) are employed to rank the oxidative potential of ENM surface sites in a cell-free environment. Our study confirms the classification of ZnO NM-110, ZnO NM-111, CuO, and carbon black as highly oxidant ENMs, while TiO2 NM-101 and NM-105 exhibit low oxidative potential due to their acidic surface sites. In contrast, CeO2 NM-211 and NM-212 demonstrate redox surface sites. SiO2 nanomaterials (NM-200 and NM-201) are shown to be inert, with low oxidation rates and minimal reactive surface density, despite their high surface area. Quantifying reactive surface sites offers a refined dose metric for assessing ENM toxicity, advancing safe-by-design nanomaterial development.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
nanotoxicology
en
dc.subject
engineered nanomaterials
en
dc.subject
oxidative potential
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
A refined dose metric for nanotoxicology based on surface site reactivity for oxidative potential of engineered nanomaterials
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/D5NA00104H
dcterms.bibliographicCitation.journaltitle
Nanoscale Advances
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
2929
dcterms.bibliographicCitation.pageend
2941
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D5NA00104H
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2516-0230
refubium.resourceType.provider
WoS-Alert