dc.contributor.author
Guitton-Spassky, Tiffany
dc.contributor.author
Schade, Boris
dc.contributor.author
Zoister, Christian
dc.contributor.author
Veronese, Eleonora
dc.contributor.author
Rosati, Marta
dc.contributor.author
Baldelli Bombelli, Francesca
dc.contributor.author
Cavallo, Gabriella
dc.contributor.author
Thünemann, Andreas F.
dc.contributor.author
Ghermezcheshme, Hassan
dc.contributor.author
Makki, Hesam
dc.contributor.author
Netz, Roland R.
dc.contributor.author
Ludwig, Kai
dc.contributor.author
Metrangolo, Pierangelo
dc.contributor.author
Singh, Abhishek Kumar
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2025-06-06T07:21:20Z
dc.date.available
2025-06-06T07:21:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47481
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47199
dc.description.abstract
Designing nanomaterials for drug encapsulation is a crucial, yet challenging, aspect for pharmaceutical development. An important step is synthesizing amphiphiles that form stable supramolecular systems for efficient drug loading. In the case of fluorinated drugs, these have superior properties and also a tendency toward reduced water solubility. For the first time, we report here fluorinated hexosome carriers made from nonionic dendritic amphiphiles, capable of encapsulating the fluorinated drug Leflunomide with high efficiency (62 ± 3%) and increasing its solubility by 12-fold. We synthesized amphiphiles with varying tail groups (fluorinated/alkylated), and their supramolecular self-assembly was investigated using cryogenic transmission electron microscopy and small-angle X-ray scattering. Furthermore, Leflunomide and its equivalent nonfluorinated counterpart were encapsulated within fluorinated and nonfluorinated assemblies. Self-assembly and encapsulation mechanisms were well supported by coarse-grained molecular simulations, yielding a fundamental understanding of the new systems.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
supramolecular
en
dc.subject
self-assembly
en
dc.subject
encapsulation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Fluorinated Hexosome Carriers for Enhanced Solubility of Drugs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/jacsau.5c00198
dcterms.bibliographicCitation.journaltitle
JACS Au
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.pagestart
2223
dcterms.bibliographicCitation.pageend
2236
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1021/jacsau.5c00198
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.funding
ACS Publications
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2691-3704