dc.contributor.author
Perez Bernal, Juan Martin
dc.date.accessioned
2025-04-29T07:14:23Z
dc.date.available
2025-04-29T07:14:23Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47362
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47080
dc.description.abstract
We present a compactification of the moduli space of principal $G$-bundles on higher-dimensional complex projective manifolds, which extends the algebro-geometric construction of Balaji of the \it Donaldson--Uhlenbeck \rm compactification. This is achieved by considering semistability calculated with respect to a multipolarization on a projective $n$-fold, consisting of $n-1$ ample integral divisor classes. Moreover, given a curve $C$ that arises as the complete intersection of $(n-1)$ very ample divisors associated with the multipolarization, we construct a modular compactification of the moduli space of principal bundles that are slope-stable with respect to $C$. Furthermore, the geometry of the newly constructed moduli spaces is described by relating them to \it Gieseker \rm moduli spaces.
en
dc.format.extent
161 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Moduli spaces
en
dc.subject
principal bundle
en
dc.subject
complex geometry
en
dc.subject
decorated sheaf
en
dc.subject.ddc
500 Natural sciences and mathematics::510 Mathematics::516 Geometry
dc.title
Donaldson-Uhlenbeck type moduli spaces for principal bundles over higher dimensional manifolds
dc.contributor.gender
male
dc.contributor.firstReferee
Schmitt, Alexander
dc.contributor.furtherReferee
Greb, Daniel
dc.date.accepted
2024-10-29
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-47362-5
refubium.affiliation
Mathematik und Informatik
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access
dcterms.accessRights.proquest
accept