dc.contributor.author
Fajgenblat, Maxime
dc.contributor.author
Wijns, Robby
dc.contributor.author
Knijf, Geert de
dc.contributor.author
Stoks, Robby
dc.contributor.author
Lemmens, Pieter
dc.contributor.author
Herremans, Marc
dc.contributor.author
Vanormelingen, Pieter
dc.contributor.author
Neyens, Thomas
dc.contributor.author
Meester, Luc de
dc.date.accessioned
2025-04-11T12:35:16Z
dc.date.available
2025-04-11T12:35:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47342
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47060
dc.description.abstract
Online portals have facilitated collecting extensive biodiversity data by naturalists, offering unprecedented coverage and resolution in space and time. Despite being the most widely available class of biodiversity data, opportunistically collected records have remained largely inaccessible to community ecologists since the imperfect and highly heterogeneous detection process can severely bias inference. We present a novel statistical approach that leverages these datasets by embedding a spatiotemporal joint species distribution model within a flexible site-occupancy framework. Our model addresses variable detection probabilities across visits and species by modelling phenological patterns and by extending the use of latent variables to characterise observer-specific detection and reporting behaviour. We apply our model to an opportunistically collected dataset on lentic odonates, encompassing over 100,000 waterbody visits in Flanders (N-Belgium), to show that the model provides insights into biological communities at high resolution, including phenology, interannual trends, environmental associations and spatiotemporal co-distributional patterns in community composition.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Bayesian hierarchical modelling
en
dc.subject
citizen science data
en
dc.subject
joint species distribution modelling
en
dc.subject
metacommunity ecology
en
dc.subject
occupancy modelling
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Leveraging Massive Opportunistically Collected Datasets to Study Species Communities in Space and Time
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e70094
dcterms.bibliographicCitation.doi
10.1111/ele.70094
dcterms.bibliographicCitation.journaltitle
Ecology Letters
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
28
dcterms.bibliographicCitation.url
https://doi.org/10.1111/ele.70094
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1461-0248
refubium.resourceType.provider
WoS-Alert