dc.contributor.author
Cai, Zhongjie
dc.contributor.author
Liu, Hongwei
dc.contributor.author
Dai, Jiajun
dc.contributor.author
Li, Bao
dc.contributor.author
Yang, Liming
dc.contributor.author
Wang, Jingyu
dc.contributor.author
Zhu, Huaiyong
dc.date.accessioned
2025-04-11T10:05:34Z
dc.date.available
2025-04-11T10:05:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47324
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47042
dc.description.abstract
Overall artificial photosynthesis, as a promising approach for sunlight-driven CO2 recycling, requires photocatalysts with efficient light adsorption and separate active sites for coupling with H2O oxidation. Here we show a In-based metal–organic framework (MOF) heterostructure, i.e., In-porphyrin (In-TCPP) nanosheets enveloping an In-NH2-MIL-68 (M68N) core, via a facile one-pot synthesis that utilises competitive nucleation and growth of two organic linkers with In nodes. The coherent interfaces of the core@shell MOFs assure the structural stability of heterostructure, which will function as heterojunctions to facilitate the efficient transfer of photogenerated charge for overall photosynthesis. The In-TCPP shell in MOFs heterostructure improves CO2 adsorption capabilities and visible light absorption to enhance the photocatalytic CO2 reduction. Simultaneously, In-O sites in M68N core efficiently catalyze H2O oxidation, achieving high yields of HCOOH (397.5 μmol g−1 h−1) and H2O2 (321.2 μmol g−1 h−1) under focused sunlight irradiation. The superior performance of this heterostructure in overall photosynthesis, coupled with its straightforward synthesis, shows great potential for mitigating carbon emissions and producing valuable chemicals using solar energy.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Photocatalysis
en
dc.subject
Sustainability
en
dc.subject
water oxidation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Sunlight-driven simultaneous CO2 reduction and water oxidation using indium-organic framework heterostructures
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2601
dcterms.bibliographicCitation.doi
10.1038/s41467-025-57742-5
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-57742-5
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert