dc.contributor.author
Nowatzky, Yannek
dc.contributor.author
Russo, Francesco Friedrich
dc.contributor.author
Lisec, Jan
dc.contributor.author
Kister, Alexander
dc.contributor.author
Reinert, Knut
dc.contributor.author
Muth, Thilo
dc.contributor.author
Benner, Philipp
dc.date.accessioned
2025-04-11T07:31:30Z
dc.date.available
2025-04-11T07:31:30Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47306
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47024
dc.description.abstract
Non-targeted metabolomics holds great promise for advancing precision medicine and biomarker discovery. However, identifying compounds from tandem mass spectra remains a challenging task due to the incomplete nature of spectral reference libraries. Augmenting these libraries with simulated mass spectra can provide the necessary references to resolve unmatched spectra, but generating high-quality data is difficult. In this study, we present FIORA, an open-source graph neural network designed to simulate tandem mass spectra. Our main contribution lies in utilizing the molecular neighborhood of bonds to learn breaking patterns and derive fragment ion probabilities. FIORA not only surpasses state-of-the-art fragmentation algorithms, ICEBERG and CFM-ID, in prediction quality, but also facilitates the prediction of additional features, such as retention time and collision cross section. Utilizing GPU acceleration, FIORA enables rapid validation of putative compound annotations and large-scale expansion of spectral reference libraries with high-quality predictions.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en
dc.subject
Mass spectrometry
en
dc.subject
Metabolomics
en
dc.subject
Method development
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
FIORA: Local neighborhood-based prediction of compound mass spectra from single fragmentation events
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2298
dcterms.bibliographicCitation.doi
10.1038/s41467-025-57422-4
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-57422-4
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert