dc.contributor.author
Kang, Jiaqi
dc.contributor.author
Wang, Xingli
dc.contributor.author
Möhle, Sebastian
dc.contributor.author
Farhoosh, Shima
dc.contributor.author
Kovács, Miklós Márton
dc.contributor.author
Schmidt, Johannes
dc.contributor.author
Liang, Liang
dc.contributor.author
Kroschel, Matthias
dc.contributor.author
Selve, Sören
dc.contributor.author
Haumann, Michael
dc.contributor.author
Dworschak, Dominik
dc.contributor.author
Dau, Holger
dc.contributor.author
Strasser, Peter
dc.date.accessioned
2025-04-11T07:22:53Z
dc.date.available
2025-04-11T07:22:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47305
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47023
dc.description.abstract
Developing low-cost, highly active, and stable catalysts for the acidic oxygen evolution reaction (OER) at the proton exchange membrane (PEM) water electrolyzer anodes remains a scientific priority. Reducing the iridium loading while increasing the intrinsic activity of the catalysts is essential for cost-effective hydrogen production. Here, we address a family of TiO2-supported Raney-IrOx catalysts with low iridium loading and high activity in single-cell PEM water electrolyzer anode environments. A controlled Raney-type Ni leaching process of pristine, supported IrNi alloy phases forms crystalline IrOx nanoparticles (NPs) featuring metallic Ir-rich cores surrounded by more amorphous IrOx surfaces. This structure is shown to be conducive to catalytic activity and the suppression of membrane poisoning due to Ni degradation. The trace amounts of Ni remaining after leaching in the IrOx NPs result in heterogeneous crystal structure and induce local lattice strain. Further, we synthetically strike a balance between conductivity and activity and succeed to narrow down the notorious large performance gap between liquid electrolyte rotating disk electrodes (RDEs) and single-cell membrane electrode assembly (MEA) electrolyzer measurements. OER stability numbers (S-numbers) of the identified Raney-IrOx anode catalysts surpass commercial IrO2 catalysts, confirming the stability of these catalysts. The PEM electrolyzer tests reveal that Raney-IrOx anodes achieve 3 A cm–2 at 1.8 V with a low geometric Ir loading of ca. 0.3 mgIr cm–2, meeting the technically important power specific Ir utilization target of 0.05 gIr/kW.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
electrolysis
en
dc.subject
oxygen evolution reaction
en
dc.subject
PEM water electrolyzer
en
dc.subject
electrocatalysis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Synthesis, Molecular Structure, and Water Electrolysis Performance of TiO2-Supported Raney-IrOx Nanoparticles for the Acidic Oxygen Evolution Reaction
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acscatal.4c06385
dcterms.bibliographicCitation.journaltitle
ACS Catalysis
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.pagestart
5435
dcterms.bibliographicCitation.pageend
5446
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acscatal.4c06385
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2155-5435
refubium.resourceType.provider
WoS-Alert